SIGNIFICANT	FIGURES
-------------	----------------

Name _____

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

1) All digits 1-9 inclusive are significant.

Example: 129 has 3 significant figures.

2) Zeros between significant digits are always significant.

Example: 5,007 has 4 significant figures.

3) Trailing zeros in a number are significant <u>only</u> if the number contains a decimal point.

Example: 100.0 has 4 significant figures.

100 has 1 significant figure.

4) Zeros in the beginning of a number whose only function is to place the decimal point are not significant.

Example: 0.0025 has 2 significant figures.

5) Zeros following a decimal significant figure are significant.

Example: 0.000470 has 3 significant figures.

0.47000 has 5 significant figures.

Determine the number of significant figures in the following numbers.

1. 0.02 _____

6. 5,000.

2. 0.020

7. 6,051.00 _____

3. 501 _____

8. 0.0005 _____

4. 501.0 _____

9. 0.1020 ____

5. 5,000 ____

10. 10,001 _____

Determine the location of the last significant place value by placing a bar over the digit. (Example: $1.70\overline{0}$)

1. 8040

6. 90,100

2. 0.0300

7. 4.7 x 10⁻⁸

3. 699.5

8. 10,800,000.

4. 2.000×10^2

9. 3.01 x 10²¹

5. 0.90100

10. 0.000410