SCIENTIFIC NOTATION

\qquad
Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros! We have learned to express these numbers as powers of 10 .
Scientific notation takes the form of $M \times 10^{n}$ where $1 \leq M<10$ and " n " represents the number of decimal places to be moved. Positive n indicates the standard form is larger than zero whereas negative n would indicate a number smaller than zero.

Example 1: Convert 1,500,000 to scientific notation. We move the decimal point so that there is only one digit to its left, a total of 6 places.

$$
1,500,000=1.5 \times 10^{6}
$$

Example 2: Convert 0.000025 to scientific notation. For this, we move the decimal point 5 places to the right.

$$
0.000025=2.5 \times 10^{-5}
$$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert the following to scientific notation.

1. $0.005=$ \qquad
2. $0.25=$ \qquad
3. $5,050=$ \qquad 7. $0.025=$ \qquad
4. $0.0008=$ \qquad 8. $0.0025=$ \qquad
5. $1,000=$ \qquad
6. $500=$ \qquad
7. $1,000,000=$ \qquad 10. $5,000=$ \qquad

Convert the following to standard notation.

1. $1.5 \times 10^{3}=$ \qquad 6. $3.35 \times 10^{-1}=$ \qquad
2. $1.5 \times 10^{-3}=$ \qquad 7. $1.2 \times 10^{-4}=$ \qquad
3. $3.75 \times 10^{-2}=$ \qquad
4. $3.75 \times 10^{2}=$ \qquad
5. $1 \times 10^{4}=$ \qquad
6. $1 \times 10^{-1}=$ \qquad
7. $2.2 \times 10^{5}=$ \qquad 10. $4 \times 10^{\circ}=$ \qquad
