DIMENSIONAL ANALYSIS (FACTOR LABEL METHOD)

\qquad

Using this method, it is possible to solve many problems by using the relationship of one unit to another. For example, 12 inches = one foot. Since these two numbers represent the same value, the fractions $12 \mathrm{in} / 1 \mathrm{ft}$ and $1 \mathrm{ft} / 12$ in are both equal to one. When you multiply another number by the number one, you do not change its value. However, you may change its unit.

Example 2: How many seconds are in 4 days?

$$
\begin{aligned}
4 \text { days } \times \frac{24 \mathrm{hrs}}{1 \text { day }} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} & =345,600 \mathrm{sec} \\
& \begin{array}{l}
\text { (Using significant figures } \\
4 \text { days }=300,000 \mathrm{sec} .)
\end{array}
\end{aligned}
$$

Solve the following problems. Write the answers in significant figures.

1. 3 hrs $=$ \qquad sec
2. $0.035 \mathrm{mg}=$ \qquad cg
3. $5.5 \mathrm{~kg}=$ \qquad lbs
4. $2.5 \mathrm{yds}=$ \qquad in
5. $\quad 1.3 \mathrm{yrs}=\ldots \mathrm{hr}(1 \mathrm{yr}=365$ days $)$
6. 3 moles $=$ \qquad molecules (1 mole $=6.02 \times 10^{23}$ molecules)
7. 2.5×10^{24} molecules $=$ \qquad moles
8. 5 moles $=$ \qquad liters (1 mole $=22.4$ liters)
9. 100 . liters $=$ \qquad moles
10. 50. liters $=$ \qquad molecules
1. 5.0×10^{24} molecules $=$ \qquad liters
2. $7.5 \times 10^{3} \mathrm{~mL}=$ \qquad liters
